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Abstract. Differential games have been widely used to model advertising
strategies of companies. Nevertheless, most of these studies have concentrated

on the dynamics and market structure of the problem, neglecting their multi-

market dimension. Since nowadays competition typically operates on multi-
product contexts and usually in geographically separated markets, the optimal

advertising strategies must take into consideration the different levels of dis-
aggregation, especially, for example, in retail multi-product and multi-store

competition contexts. In this paper, we look into the decision-making process

of a multi-market company that has to decide where, when and how much
money to invest in advertising. For this purpose, we develop a model that

keeps the dynamic and oligopolistic nature of the traditional advertising game

introducing the multi-market dimension of today’s economies, while differen-
tiating global (i.e. national TV) from local advertising strategies (i.e. a price

discount promotion in a particular store). It is important to note, however, that

even though this problem is real for most multi-market companies, it has not
been addressed in the differential games literature. On the more technical side,

we steer away from the traditional aggregated dynamics of advertising games

in two aspects. Firstly, we can model different markets at once, obtaining a
global instead of a local optimum, and secondly, since we are incorporating a

variable that is common to markets, the resulting equations systems for every
market are now coupled. In other words, one’s decision in one market does

not only affect one’s competition in that particular market; it also affects one’s
decisions and one’s competitors in all markets.

1. Introduction. The dynamic modeling of advertising competition has a long-
standing tradition in operations research and economics starting with the seminal
works of Vidale and Wolfe [32] and Kimball [22], who developed the Vidale-Wolfe
model and the Lanchester model1, respectively.

The Vidale-Wolfe model, on the one hand, proposes a direct relationship between
the rate of change of the advertising efforts of companies and their sales, while the
Lanchester model, on the other hand, aims at the market share evolution of two
competitors given their advertising level just as it would occur in a military combat
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model. Moreover, applying a more economic view of the problem, Nerlove and
Arrow [27] developed a model where advertising is an instrument to increase the
stock of goodwill or reputation, including the effects of advertising expenses incurred
by a company on the demand for its goods. Over time, all these approaches have
converged onto a game-theoretic view of the problem that has attracted a great deal
of research in the last thirty years, particularly in the subject of differential games.
The differential game approach aims at obtaining a dynamic Nash equilibrium in
advertising strategies. For excellent surveys of the subject, see [20, 14, 9, 12, 21,
18, 30].

Most early research on differential games and advertising competition considered
duopolies and optimal open-loop equilibrium solutions. However, researchers de-
veloped more complete and sophisticated models in recent years; for instance, see
[8, 16, 15, 4, 21, 13, 28, 23]. Indeed, in order to get a quantitative idea of when and
how much to invest in advertising, it seems necessary to recognize that advertis-
ing games are dynamic and oligopolistic in nature, as both literature and practice
suggest. For empirical analyses see [11, 6, 5, 16, 2].

Nevertheless, most research has concentrated on the dynamics and market struc-
ture of the problem, neglecting its multi-market dimension2. Nowadays, companies
typically compete on geographically separated and/or segmented markets; conse-
quently, the multi-market modeling of advertising strategies is a crucial issue.

Thus, supermarket chains, multinationals, franchises as well as food, gasoline,
supplies and service retailers (i.e. banks and telecommunications, to mention a
couple), compete for market shares in different locations within a city, region or
country. Their results, however, differ since they usually segment their strategies
by different types of consumers, specific places, formats (distribution channels) and
advertising. By way of example, see [7, 1, 10, 19].

Furthermore, different markets may involve clients with different social back-
grounds and preferences, markets with different levels of revenue and competi-
tion, different rates of sales growth, and different costs and channels of advertising.
Within this context, we may consider the multi-market problem as a type of market
segmentation. To that effect, you may see ref. [3].

Within this context of heterogeneity, a general model considering average param-
eters could give sub-optimal results. On the other hand, locally optimal strategies
will always be sub-optimal strategies, unless there is a perfect homogeneity between
the store’s characteristics and environments, in terms of the effectiveness of their
strategy, costs and levels of competitiveness.

Besides, on the practical side of the problem, retail chains have to choose whether
to undertake global (i.e. worldwide, national or regional) or local (i.e. a city zone
or region, or even an entire country) advertising efforts or an optimal combination
of both; again, applying different spatial levels of effectiveness and costs to both
advertising strategies. This should take into consideration that global advertising
campaigns usually substitute local efforts somehow.

Let us take, by way of example, two food retailers: W and T compete in almost
every corner of a country and they are currently expanding their operations world-
wide. In a high-income location, W could choose to have a higher market share due
to the level of monetary margin obtained. To that effect, W implements additional
promotions and starts installing huge ads on the streets as part of a very aggressive

2An exception is [26], who proposed a partial differential equation (PDE) to characterize the
goodwill dynamics of a monopoly in both the space and time dimensions.
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advertising campaign. At the same time, at a national level, W could decide to
decrease its expense, cutting down television spots and its support to the national
football team. T will have to respond to W at the global level and in the specific
market of interest. Current modeling strategies cannot quantitatively answer the
question of W’s optimal level of global advertising, nor the optimal response of T
given W’s strategy.

Given this heterogeneous environment, companies usually have to decide as to
when and how much to invest in advertising, but also as to which market to allocate
their advertising funds. Moreover, retail chains have to choose whether to undertake
global (i.e. worldwide, national or regional) or local (i.e. a city zone or region, or
even an entire country) advertising efforts or an optimal combination of both.

The present investigation specifically intends to addresses this gap in the litera-
ture, presenting a dynamic spatial oligopoly model. Specifically, we propose a model
that, keeping the dynamic and oligopolistic characteristic of the advertising game,
introduces the multi-market dimension of multi-store companies, now considering
global and local advertising strategies. Given the complexity of this problem, an
analytical solution is very difficult or impossible to obtain. Thus, we developed a
numerical model to simulate a centralized versus a decentralized decision-making
process for different advertising strategies. Our results highlight the importance
of multi-market modeling, depending on the effectiveness of global advertising and
market heterogeneity.

The structure of this paper is the following: in section 2 we give a very short
review of the different models associated to the advertising problem. In Section
3, we formulate the dynamic spatial advertising problem in a very general fashion,
considering n companies and K markets in an oligopolistic setting. Section 4 shows
the particular case of two players and two specific markets. In this section, we seek
for a numerical solution applicable to several cases with the purpose of analyzing
the importance of global advertising strategies, the asymmetries of the players and
the geographical presence of the companies. Finally, we provide a detailed summary
and suggest guidelines for future research.

2. The basic dynamic advertising model. The Lanchester model is a math-
ematical representation of the dynamics between two opposite forces fighting to
annihilate each other [24]. As mentioned above, several authors saw this as an
analogy between armies and companies fighting for market share while using their
respective advertising budgets as their main weapons and modifying the basic and
famous Lanchester equations. To that effect, you may refer to [22] for the first
application. We describe a duopolistic model of dynamic advertising competition
as follows:

·
x1 = σ1µ1(1− x1)− σ2µ2x1 (1)
·
x2 = σ2µ2(1− x2)− σ1µ1x2

In simple words, the dynamics that govern the market share of companies (un-
derstood as a company’s sales percentage divided by total market sales) depend
positively from the advertising expense (budgetary effort) of the µ1 company and
its corresponding σ1 effectiveness, and negatively, on the advertising expense (bud-
getary effort) of the rival µ2 company and its corresponding σ2 effectiveness. Please
refer to [32] and [25]. Years later, [29, 31]introduced an important extension to this
model:
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·
x1 = σ1µ1

√
1− x1 − σ2µ2

√
x1 (2)

·
x2 = σ2µ2

√
1− x2 − σ1µ1

√
x2

The main feature of this extended formulation was to introduce diminishing
marginal returns on advertising and, consequently, on its real-world application as
word-of-mouth and excess advertising effects. The work of Chintagunta and Jain
[5] complements this potentially better fit to the real world of applications.

The problem is completed as an optimal control problem adding the objective
function of the firm:

max
µ1

J1 =
∫ T
0
e−r1t

[
q1 · x1 − 1

2c1µ
2
1

]
dt (3)

subject to
·
x1 = σ1µ1

√
1− x1 − σ2µ2

√
x1 (4)

where the company maximizes dynamically its profits J1 (i.e. incomes minus costs)
for the next T periods using a discount rate of r1. Its income is obtained by
multiplying its market share (x1) by its gross profit per unit of market share (q1),
while its costs are assumed as a quadratic function of the advertising effort; see for
example [31, 9, 21]. Company 1 wishes to choose its efforts in advertising µ1, which
depends upon the same decision of its rival. For the optimal open-loop solution of
the differential game shown in 3, we define each company’s Hamiltonian current-
value, as follows3:

H1(x1, µ1, λ1, t) = q1 · x1 −
1

2
c1µ

2
1 + λ1

[
σ1µ1

√
1− x1 − σ2µ2

√
x1
]

The control of this problem, the Nash Equilibrium, is then defined as:

µ1(t) =
λ1
c1

√
1− x1 (5)

In order to solve 5, we need to solve a system of (coupled) differential equations
of each company’s co-state equation, as follows4:

·
λ1 =

σ2
1λ

2
1

2c1
+

[
σ2
2λ2
2c1

+ r1

]
λ1 − q1 (6)

Equation 6 shows that
·
λ1 does not depend on the state variables x1, x2, thus,

for the stationary trajectories when
·
λ1 = 0, the phase space of the system(λ, x) is

represented by lines parallel to the x axis. On the other hand, the unique solution
of the state equation is:

·
x1(t) =

σ2
1η1(t)

c1
(1− x1(t))− σ2

2η2(t)

c2
x1(t) (7)

where η1(t) and η2(t) are the solutions of 6. Finally, the solutions of 6 and 7 are
replaced into 5 in order to find the solution to the optimal advertising problem.
Recently, [13] found the equilibrium for Nash’s feedback equilibrium on advertising
strategies for an oligopoly model. Most of the current research in the area modifies
and extends the model explained above including technical generalizations and/or
highlighting new real problems in the industry. The objective of our research is
to advance in these two aspects: on the one hand, to solve a heretofore-unsolved

3To save space, we will only show the equations corresponding to firm1.
4Considering the following normalization of the variables:λ1 → λ1

e−r1t and λ2 → λ2

e−r2t
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technical problem and, on the other, to tackle a real and contemporaneous industrial
problem in this area.

Firstly, we must recognize that most companies today are essentially multi-
market. This means that they face several problems of optimal advertising strategies
as described above, but all of them with potentially different parameters. For ex-
ample, the market share of a supermarket chain in one part of the city could be
very different in another location. Secondly, we also introduce to the model the
possibility of doing local advertising and apply global advertising strategies. The
global advertising strategy could be, for example, to advertise using TV spots that
constitute an effort for every different geographical market. This problem is very
real today in many industries; however, to date the literature does not offer a con-
trol problem toward its analysis. Our model is, therefore, the first to deal directly
with this question of how to distribute a company’s advertising efforts between
local and global strategies. Indeed, global advertising strategies seem to be very
appealing because they reach all markets at the same time; nevertheless, they are
usually quite expensive. Hence, there is no intuitive answer to this question and,
within this context, our model could be very useful, especially considering the great
amount of money that multi-market companies spend yearly on advertising.

On the more technical side, we depart from the above-indicated game in two
aspects. One is that we can model different markets at once obtaining a global
optimum and, the other, is that since we are considering a variable that is common
to all the different markets, all the resulting systems for every market are indeed
coupled. In other words, one’s decision in one’s market does not only affect one’s
competition in that particular market, but it also affects one’s decisions in all mar-
kets, and, likewise, for my competitors. Thus, the problem gets exponentially more
complex, requiring a general Nash Equilibrium solution. Again, to the best of our
knowledge, no problem like this (within the context of the management science) has
yet been thus proposed and solved numerically.

3. The general model. Consider a dynamic oligopoly with n firms. We use the
index i = 1, ..., n to represent the participant firms and the index k = 1, ...,K to set
the number of markets. We begin by listing the main notation:

Ji Profit function of player i.
xik(t) Market share of player i at location k.
qik Gross profit rate per unit of market share of player i

at location k.
Qik Second order gross profit rate per unit of market share of

player i at location k.
bik Linear local advertising cost of player i at location k.
Bik Second order local advertising cost of player i at location k.
ei Linear global advertising cost of player i at location k.
Ei Second order global advertising cost of player i.
σik Effectiveness of local advertising of player i at location k.
σi Effectiveness of global advertising of player i at location k.
ri Discount rate of player i.

µik(t) Local advertising effort of player i at location k.
µi(t) Global advertising effort of player i.

Table 1. Notation
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Each firm maximize its aggregate profits, gaining market share from its rivals
through its advertising, and also loses market share to its rivals due to their adver-
tising in each particular market. In this analysis, the location is explicitly modeled,
differentiating from global (worldwide, national or regional) or local (a zone in a
city or a region, or even a country) advertising efforts. The results of the model
are the optimal allocation of global and local advertising, considering the strategy
of its rival.
xik(t) denotes firm i’s market share at time t and location k, assuming that

the size of the total market is constant over time. Normalizing the total market
to 1, the rest of the market share becomes 1 − xik(t). Firm i wishes to choose its
advertising efforts; µik(t) and µi(t), at local and global levels respectively, ∀ t ε [0, T ]
and k = 1, ...,K such that its payoffs is maximized subject to µik(t) ≥ 0 and
µi(t) ≥ 0 ∀ t ε [0, T ] and k = 1, ...,K. The state space is specified by the constraints
0 ≤ xik(t) ≤ 1, ∀ t ε [0, T ] and k = 1, ...,K.

This dynamic multi-market differential game is defined by the n competitors
functionals Ji (i = 1..n) given by:

Ji =

T∫
0

e−rit

[
K∑
k=1

(
qik xik(t) +

1

2
Qik xik(t)2 − bik µik(t)

− 1

2
Bikµik(t)2

)
− eiµi(t)−

1

2
Eiµi(t)

2

]
dt

(8)

subject to

dxik
dt

= αik(t)
√

1− xik(t)−
n∑
j=1
j 6=i

αjk(t)
√

1− xjk(t)
i = 1, . . . , (n− 1).
k = 1, . . . ,K.

(9)

where the coefficients αik(t) depend on the control variables according to

αik(t) = σik µik(t) + σi µi(t),
i = 1, . . . , n.
k = 1, . . . ,K.

(10)

Note that for fixed k, there are (n− 1) dynamical equations for the xik(t). It is due
to the restrictions

n∑
j=1

xjk(t) = 1 k = 1, ..., K (11)

Thus, in the set of n state variables {xjk(t)}|j=1, 2 ,..., n, there are only (n − 1)
independent ones. It is assumed here the set {x1k, x2k, .., xn−1k} is the indepen-
dent state variables set (for fixed k) and that the last variable xnk is the dependent
one, and given by

xnk = 1− x1k − x2k − x3k − ...− xn−1k = 1−
n−1∑
j=1

xjk (12)

Equation (9) can written in terms of the independent state variables as

dxik
dt

=

n−1∑
j=1

γij αjk(t)
√

1− xjk(t)− αnk(t)

√√√√n−1∑
l=1

xlk(t)
i = 1, . . . , (n− 1).
k = 1, . . . ,K.

(13)
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where

γij =

{
+1 if i = j

−1 if i 6= j
(14)

In order to get a solution, we first construct the Hamiltonian for each firm.
Written in terms of the independent state variables, the Hamiltonian for each of
the first (n− 1) players is

Hi =e−rit

[
K∑
k=1

(
qik xik(t) +

1

2
Qik xik(t)2 − bik µik(t)− 1

2
Bik µik(t)2

)
− ei µi(t)−

1

2
Ei µi(t)

2

]
+

n−1∑
m=1

K∑
k=1

λimk(t)

[
n−1∑
j=1

γmj αjk(t)
√

1− xjk(t)

− αnk(t)

√√√√n−1∑
l=1

xlk(t)

]
, i = 1, . . . , (n− 1),

(15)

and for the last player (i = n)

Hn = e−rnt
[ K∑
k=1

(
qnk (1−

n−1∑
j=1

xjk) +
1

2
Qnk (1−

n−1∑
j=1

xjk)2

− bnk µnk(t)− 1

2
Bnk µnk(t)2

)
− en µn(t)− 1

2
En µn(t)2

]
+

n−1∑
m=1

K∑
k=1

λnmk(t)

n−1∑
j=1

γmj αjk(t)
√

1− xjk(t)− αnk(t)

√√√√n−1∑
l=1

xlk(t)


(16)

Following Potryagin’s Maximum Principle, firstly, the optimization of the control
variables gives

∂Hi

∂µik
= 0,

∂Hi

∂µi
= 0,

∂Hn

∂µnk
= 0,

∂Hn

∂µn
= 0; i = 1, .., (n− 1) (17)

which have to be solved to find the optimal controls

µik(t) , µi(t); i = 1, .., (n− 1); k = 1, .., K.

µnk(t) , µn(t); k = 1, .., K.
(18)

In fact, the optimal controls variables (17) are:

µik(t) =

σik
√

1− xik(t)

(∑n−1
m=1 γmi λ

i
mk(t)

)
e−rit Bik

− bik
Bik

,
i = 1, . . . , (n− 1).
k = 1, . . . ,K.

(19)

µi(t) =

∑K
k=1 σi

√
1− xik(t)

(∑n−1
m=1 γmiλ

i
mk(t)

)
e−rit Ei

− ei
Ei

i = 1, . . . , (n−1). (20)
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µnk(t) = −
σnk

√∑n−1
l=1 xlk(t)

(∑n−1
m=1 λ

n
mk(t)

)
e−rnt Bnk

− bnk
Bnk

k = 1, . . . ,K. (21)

µn(t) = −

∑K
k=1 σn

√∑n−1
l=1 xlk(t)

(∑n−1
m=1 λ

n
mk(t)

)
e−rnt En

− en
En

(22)

Note that the net effect of the linear terms in µik and µi associated with the bik
and ei parameters in the functionals (3), is to reduce in a rigid way the value of the
optimal advertising efforts according to equations (19) to (22).

For optimal open loop strategies, the dynamical equations of the Lagrangian
multipliers are

λ̇ijk = − ∂H
i

∂xjk
,

i = 1, . . . , (n− 1).
j = 1, 2, . . . , (n− 1).
k = 1, . . . ,K.

(23)

λ̇njk = −∂H
n

∂xjk
,

j = 1, 2, . . . , (n− 1).
k = 1, . . . ,K.

(24)

that is

λ̇ijk = −e−ritδij(qik +Qik xik) +

n−1∑
m=1

λimk

[γmj (σjk µjk(t) + σj µj(t)

)
2
√

1− xjk

+

(
σnk µnk(t) + σn µn(t)

)
2
√∑n−1

l=1 xlk

]
,

i = 1, . . . , (n− 1).
j = 1, 2, . . . , (n− 1).
k = 1, . . . ,K.

(25)

and

λ̇njk = e−rnt

[
qnk +Qnk(1−

n−1∑
p=1

xpk)

]
+

n−1∑
m=1

λnmk

[γmj (σjk µjk(t)σj µj(t)

)
2
√

1− xjk
+

+

(
σnk µnk(t) + σn µn(t)

)
2
√∑n−1

l=1 xlk

]
,

j = 1, 2, . . . , (n− 1).
k = 1, . . . ,K.

(26)

In order to obtain a flavor of the above equations, the 2×2 case will be analyzed
in detail in the following section.

4. The 2 firms - 2 market case. In this section, a model for the 2 firms - 2
market case is developed. Firstly, the equations for this particular case are derived
from the general model. Secondly, the bang-bang control of the duopoly game is
analyzed. Finally, a numerical solution is found for several cases of studies, with
the aim of analyzing the importance of global advertising strategies, asymmetries
of the players, and the geographical presence of firms.
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4.1. The basic 2x2 Model. In this case the state variables x1k(t) and x2k(t) are
restricted by x1k(t) + x2k(t) = 1 for each k = 1, 2 and for all t. Hence, there is
only two independent state variables which is chosen to be x1k (k = 1, 2). The
equation of motion for each of these dynamical variables is

ẋ1k(t) = α1k(t)
√

1− x1k(t)− α2k(t)
√

1− x2k(t) k = 1, 2 (27)

or in terms of the independent variable x1k

ẋ1k(t) = α1k(t)
√

1− x1k(t)− α2k(t)
√
x1k(t) k = 1, 2 (28)

where

α1k(t) = σ1k µ1k(t) + σ1 µ1(t) k = 1, 2 (29)

and

α2k(t) = σ2k µ2k(t) + σ2 µ2(t) k = 1, 2 (30)

The functional for the player 1 and 2 are

J1 =

∫ T

0

e−r1t

[
2∑
k=1

(
q1k x1k(t) +

1

2
Q1k x1k(t)2 − b1k µ1k(t)

− 1

2
B1k µ1k(t)2

)
− e1 µ1(t)− 1

2
E1 µ1(t)2

]
dt

(31)

and

J2 =

∫ T

0

e−r2t

[
2∑
k=1

(
q2k (1− x1k(t)) +

1

2
Q2k (1− x1k(t))2 − b2k µ2k(t)

− 1

2
B2k µ2k(t)2

)
− e2 µ2(t)− 1

2
E2 µ2(t)2

]
dt

(32)

subject to the equation (28). The corresponding Hamiltonians are

H1 =e−r1t

[
2∑
k=1

(
q1k x1k(t) +

1

2
Q1k x1k(t)2 − b1k µ1k(t)− 1

2
B1k µ1k(t)2

)

− e1 µ1(t)− 1

2
E1 µ1(t)2

]

+

2∑
k′=1

λ11k′

(
α1k′(t)

√
1− x1k′(t)− α2k′(t)

√
x1k′(t)

)
(33)

and

H2 =e−r2t

[
2∑
k=1

(
q2k (1− x1k(t)) +

1

2
Q2k (1− x1k(t))2 − b2k µ2k(t)

− 1

2
B2k µ2k(t)2

)
− e2 µ2(t)− 1

2
E2 µ2(t)2

]

+

2∑
k′=1

λ21k′

(
α1k′(t)

√
1− x1k′(t)− α2k′(t)

√
x1k′(t)

)
(34)
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So the Pontryagin equation for this case are for player 1

λ̇11k = − ∂H
1

∂x1k
, ẋ1k =

∂H1

∂λ11k
,

∂H1

∂µ1k
= 0,

∂H1

∂µ1
= 0. k = 1, 2

and for player 2

λ̇21k = − ∂H
2

∂x1k
, ẋ1k =

∂H2

∂λ21k
,

∂H2

∂µ2k
= 0,

∂H2

∂µ2
= 0. k = 1, 2

The equations for the control variables µ1k, k = 1, 2, µ2k, k = 1, 2, µ1 and µ2

gives the following expression for the control variables in terms of the state variable
x1k and Lagrange multiplier λ11k, k = 1, 2 and λ21k, k = 1, 2 is for the player 1

µ1k(t) =
λ11k σ1k

√
1− x1k(t)

e−r1t B1k
− b1k
B1k

, k = 1, 2 (35)

µ1(t) =

∑
k′ σ1 λ

1
1k′

√
1− x1k′(t)

e−r1t E1
− e1
E1

(36)

and for the player 2 are

µ2k(t) = −
λ21k σ2k

√
x1k(t)

e−r2t B2k
− b2k
B2k

, k = 1, 2 (37)

µ2(t) = −
∑
k′ σ2 λ

2
1k′

√
x1k′(t)

e−r2t E2
− e2
E2

(38)

The dynamical equations for the Lagrangian multipliers give the following system
of coupled differential equations

λ̇11k = −e−r1t(q1k +Q1k x1k) + λ11k

(
α1k

2
√

1− x1k
+

α2k

2
√
x1k

)
, k = 1, 2 (39)

and

λ̇21k = e−r2t
(
q2k +Q2k(1− x1k)

)
+ λ21k

(
α1k

2
√

1− x1k
+

α2k

2
√
x1k

)
, k = 1, 2 (40)

Considering the following normalization of the variables:λ1 → λ1

e−r1t and λ2 →
λ2

e−r2t and clearing for λ̇111, we can compare the dynamics of the co-state variable in
the base case, eq. (6), with the co-state variable in the multi-product case that is:

λ̇111 =r1λ
1
11 − (q11 +Q11x11) (41)

+
[ (σ11)2

2B11
+

(σ1)2

2E1

]
(λ111)2 +

(σ1)2

2E1
λ111λ

1
12

√
1− x12
1− x11

−
[ (σ21)2

2B21
+

(σ2)2

2E2

]
λ111λ

2
11 −

(σ2)2

2E2
λ111λ

2
12

√
x12
x11

− λ111e1σ1
2E1

√
1− x11

− λ111b11σ11
2B11

√
1− x11

− λ111e2σ2
2E2
√
x11
− λ111b21σ21

2B21
√
x11

Clearly, in this case λ̇111 depend explicitly on the state variables x11 and x12, as
opposed to the aggregate case. Finally, as in the general model, the equations
(28), (35), (36), (37), (38), (39) and (40) give origin to a systems of equations of
six dimensions, which can be integrated numerically to give the solutions to the
problem. In particular, in the next sections, we will evaluate some numerical cases
and compare it with a pure 2 × 2 global game. We started first with the simplest
global dynamics in the next subsection.
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4.2. The bang-bang control for the 2 × 2 game: The global case. In this
section the bang-bang control of the duopoly game developed above for the global
case will be analyzed. For greater simplicity, we will assume that Q11 = 0, Q21 = 0,
E1 = 0, E2 = 0, r1 = 0 and r2 = 0 in order to found some analytical solutions.
Also, we assume that the control variables are restricted to the positive intervals

I1 = {µ−1 ≤ µ1 ≤ µ+
1 } , I2 = {µ−2 ≤ µ2 ≤ µ+

2 }
The linear game is defined by gamers functionals

J1 =

∫
(q11x− e1µ1) dt (42)

and

J2 =

∫
= (q21x− e2µ2) dt (43)

subject to a linear form of the state variable equation given by
dx
dt = α1(1− x)− α2x

where

α1 = σ1µ1 , α2 = σ2µ2

The respective Hamiltonians are

H1 = (q11x− e1µ1) + λ1(σ1µ1(1− x)− σ2µ2x)

H2 = (q21(1− x)− e2µ2) + λ2(σ1µ1(1− x)− σ2µ2x)

or
H1 = q11x+ [λ1σ1(1− x)− e1]µ1 − [λ1σ2x]µ2

H2 = q21(1− x) + [λ2σ1(1− x)]µ1 − [λ2σ2x+ e2]µ2

or
H1 = q11x+m1

1 µ1 +m1
2 µ2

H2 = q21(1− x) +m2
1 µ1 +m2

2 µ2

Hence, the Hamiltonians are planes in the (µ1, µ2) space. The optimization of both
Hamiltonian respect to the control variables, implies that there are in principle four
possibles constant choices for the optimal (µ∗1, µ

∗
2) solution which are (they are the

vertex of the square I1 × I2):

(µ+
1 , µ

+
2 ), (µ+

1 , µ
−
2 ), (µ−1 , µ

+
2 ), (µ−1 , µ

−
2 ).

The specific values of (µ∗1, µ
∗
2) are depending on the sign of the slopes m1

1, m1
2,

m2
1 and m2

2. An important point is that the optimal control solution is a piece-wise
time function. So the the game is characterized by time intervals in which the
values of µ∗1 and µ∗2 are constant. We will denoted these constant optimal solutions
generically by (µ∗1, µ

∗
2) (it specific values depend of the chosen time interval).

The Pontryagin equations for the Lagrange multipliers are

−λ̇1 =
∂H1

∂x
, −λ̇2 =

∂H2

∂x
that is

−λ̇1(t) = q11 − (σ1µ
∗
1 + σ2µ

∗
2) λ1(t)

−λ̇2(t) = −q21 − (σ1µ
∗
1 + σ2µ

∗
2) λ2(t)

or
−λ̇1(t) = q11 − a∗λ1(t)

−λ̇2(t) = −q21 − a∗λ2(t)
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with a∗ = (σ1µ
∗
1 + σ2µ

∗
2). Note that a∗ > 0 because µ−1 , µ+

1 , µ−2 , µ+
2 , σ1 and σ2

are positive quantities and also a∗ is a piece-wise time function. If the game is
defined in the interval 0 ≤ t ≤ T , the solution of the above equations that satisfy
the transversality conditions

λ1(T ) = 0 , λ2(T ) = 0

are

λ1(t) =
q11
a∗

(1− ea
∗(t−T )) (44)

λ2(t) = −q21
a∗

(1− ea
∗(t−T )) (45)

so λ1(t) > 0 and λ2(t) < 0 in the interval 0 ≤ t ≤ T .
The state variable satisfy the equation

ẋ(t) = σ1µ
∗
1(1− x(t))− σ2µ∗2x(t)

or

ẋ(t) = σ1µ
∗
1 − a∗x(t)

The form of solution for the initial condition x(0) = x0 in a specific piece-wise time
interval is

x(t) =
σ1µ

∗
1

a∗
− [

σ1µ
∗
1

a∗
− x0]e−a

∗t (46)

where µ∗1 is a piecewise function in time.
The stationary solution for this game are

−λ̇1(t) = q11 − a∗λ1(t) = 0

−λ̇2(t) = −q21 − a∗λ2(t) = 0

ẋ(t) = σ1µ
∗
1 − a∗x(t) = 0

that is

λ1s =
q11
a∗

, λ2s = −q21
a∗

, xs =
σ1µ

∗
1

a∗
.

For a finite time game horizon T these static solutions are never reached for this
system. Only if T → ∞, these stationary point are reached from the solutions as
one can see from (49), (50) and (51). In fact, for the infinite-horizon game the
Lagrange multipliers are constant and given by

λ1(t) =
q11
a∗

t ≥ 0

λ2(t) = −q21
a∗

t ≥ 0

The dynamical evolution of the system through of the different piece-wise sectors,
will depend on the specific chosen values of the game parameters.

As an example, and for greater simplicity, we will assume that Q11 = 0, Q21 = 0,
E1 = 0, E2 = 0, r1 = 0 and r2 = 0 and we will set all other parameters equal to
one, in order to examine the simple singular solution. Also, we will assume that the
control variables are restricted to the following intervals:

I1 = {0 ≤ µ1 ≤ 1} , I2 = {0 ≤ µ2 ≤ 1}
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Thus, the linear game is defined by gamers functionals:

J1 =

T∫
0

x− µ1 dt (47)

and

J2 =

T∫
0

(1− x)− µ2 dt (48)

subject to a linear form of the state variable equation given by
dx
dt = (1− x)µ1 − xµ2

The respective Hamiltonians are

H1 = (x− µ1) + λ1
(

(1− x)µ1 − xµ2

)
H2 = ((1− x)− µ2) + λ2

(
(1− x)µ1 − xµ2

)
or

H1 = x+ [λ1(1− x)− 1]µ1 − [λ1x]µ2

H2 = (1− x) + [λ2(1− x)]µ1 − [λ2x+ 1]µ2

or

H1 = x+m1
1 µ1 +m1

2 µ2

H2 = (1− x) +m2
1 µ1 +m2

2 µ2

Hence, the Hamiltonians are planes in the (µ1, µ2) space. The optimization of both
Hamiltonian respect to the control variables, implies that there are in principle four
possibles constant choices for the optimal (µ∗1, µ

∗
2) solution which are (they are the

vertex of the square I1 × I2):

(1, 1), (0, 1), (1, 0), (0, 0).

The specific values of (µ∗1, µ
∗
2) are depending on the sign of the slopes m1

1, m1
2,

m2
1 and m2

2. An important point is that the optimal control solution is a piece-wise
time function. So the the game is characterized by time intervals in which the
values of µ∗1 and µ∗2 are constant. We will denoted these constant optimal solutions
generically by (µ∗1, µ

∗
2) (it specific values depend of the chosen time interval).

The Pontryagin equations for the Lagrange multipliers are

−λ̇1 =
∂H1

∂x
, −λ̇2 =

∂H2

∂x

that is

−λ̇1(t) = 1− (µ∗1 + µ∗2) λ1(t)

−λ̇2(t) = −1− (µ∗1 + µ∗2) λ2(t)

or

−λ̇1(t) = 1− a∗λ1(t)

−λ̇2(t) = −1− a∗λ2(t)

with a∗ = (µ∗1 + µ∗2). Note that a∗ ≥ 0 and also a∗ is a piece-wise time function. If
the game is defined in the interval 0 ≤ t ≤ T , the solution of the above equations
that satisfy the transversality conditions

λ1(T ) = 0 , λ2(T ) = 0
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are

λ1(t) =
1

a∗
(1− ea

∗(t−T )) (49)

λ2(t) = − 1

a∗
(1− ea

∗(t−T )) (50)

so λ1(t) > 0 and λ2(t) < 0 in the interval 0 ≤ t ≤ T .
The state variable satisfy the equation

ẋ(t) = µ∗1(1− x(t))− µ∗2x(t)

or

ẋ(t) = µ∗1 − a∗x(t)

The form of solution for the initial condition x(0) = x0 in a specific piece-wise time
interval is

x(t) =
µ∗1
a∗
−
[
µ∗1
a∗
− x0

]
e−a

∗t (51)

where µ∗1 is a piecewise function in time. The intuition behin this very simplified
game is clear, the market share of a firm in a particular market will be directly

proportional to its relative marketing effort:
µ∗1
a∗ =

µ∗1
µ∗1+µ

∗
2
.

The stationary solution for this game are

−λ̇1(t) = 1− a∗λ1(t) = 0

−λ̇2(t) = −1− a∗λ2(t) = 0

ẋ(t) = µ∗1 − a∗x(t) = 0

that is

λ1s =
1

a∗
, λ2s = − 1

a∗
, xs =

µ∗1
a∗
.

For a finite time game horizon T these static solutions are never reached for this
system. Only if T → ∞, these stationary point are reached from the solutions as
one can see from (49), (50) and (51). In fact, for the infinite-horizon game the
Lagrange multipliers are constant and given by

λ1(t) =
1

a∗
t ≥ 0

λ2(t) = − 1

a∗
t ≥ 0

The dynamical evolution of the system through of the different piece-wise sectors,
will depend on the specific chosen values of the game parameters.

4.3. The bang-bang control for the 2 × 2 game: The local case. We assume
that the control variables are restricted to the positive intervals

I1k = {µ−1k ≤ µ1k ≤ µ+
1k} , I2k = {µ−2k ≤ µ2k ≤ µ+

1k},
I1 = {µ−1 ≤ µ1 ≤ µ+

1 } , I2 = {µ−2 ≤ µ2 ≤ µ+
2 }

In this case the linear game is defined by the functionals

J1 =

T∫
0

[
2∑
k=1

(q1k x1k(t)− b1kµ1k(t))− e1µ1(t)

]
dt (52)
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J2 =

T∫
0

[
2∑
k=1

(q2k (1− x1k(t))− b2kµ2k(t))− e2µ2(t)

]
dt (53)

subject to a linear form of the state variables equation given by

ẋ1k = (σ1kµ1k + σ1µ1)(1− x1k)− (σ2kµ2k + σ2µ2) x1k k = 1, 2 (54)

The respective Hamiltonians are

H1 =

2∑
k′=1

(
q1k′x1k′(t)− b1k′µ1k′(t)

)
− e1µ1(t)

+

2∑
k′=1

λ1k′

(
α1k′(t)(1− x1k′(t))− α2k′(t)x1k′(t)

) (55)

H2 =

2∑
k′=1

(
q2k′(1− x1k′(t))− b2k′µ2k′(t)

)
− e2µ2(t)

+

2∑
k′=1

λ2k′

(
α1k′(t)(1− x1k′(t))− α2k′(t)x1k′(t)

) (56)

Again the Hamiltonians H1 and H2 are hyperplanes in the six-dimensional space
of control variables (µ11, µ12, µ21, µ22, µ1, µ2) of the form

H1 = c1 +

2∑
k=1

m1
1kµ1k +

2∑
k=1

m1
2kµ2k +m1

1µ1 +m1
2µ2, (57)

H2 = c2 +

2∑
k=1

m2
1kµ1k +

2∑
k=1

m2
2kµ2k +m2

1µ1 +m2
2µ2, (58)

with

c1 =

2∑
k=1

q1kx1k(t) , c2 =

2∑
k=1

q2k(1− x1k(t))

m1
1k =

2∑
k=1

[
−b1k + λ1kσ1k(1− x1k)

]
, m2

1k =

2∑
k=1

[
λ2kσ1k(1− x1k)

]

m1
2k = −

2∑
k=1

[
λ1kσ2kx1k

]
, m2

2k = −
2∑
k=1

[
b2k + λ2kσ2kx1k

]

m1
1 = −e1 + σ1

2∑
k=1

[
λ1k(1− x1k)

]
m2

1 = σ1

2∑
k=1

[
λ2k(1− x1k)

]

m1
2 = −σ2

2∑
k=1

[
λ1kx1k

]
m2

2 = −e1 − σ2
2∑
k=1

[
λ2kx1k

]
In this case, the optimal solution for the control variables would be in the vertex
of a six dimensional hypercube C = I11 × I12 × I21 × I22 × I1 × I2. The specific
optimal values will depend on the sign of the slopes m1

1k, m1
1, m2

2k and m2
2k in the

Hamiltonian hyperplanes, and these slopes depends on the particular chosen values
of the game’s parameters. But whatever be the specific optimal control values, one
can obtain the structural form of the game solution which is valid in any sector
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of the optimal control parameter space. Thus, the optimal control variables will
be again a piecewise time functions and the solution of the game will have the
same structural form in each of these piecewise time sector, differing only in the
specific optimal control values. In fact, the Pontryagin equations for the Lagrangian
multipliers are

−λ̇1k =
∂H1

∂x1k
, −λ̇2k =

∂H2

∂x2k
that is

−λ̇1k(t) = q1k −
[
σ1kµ

∗
1k + σ1µ

∗
1 + σ2kµ

∗
2k + σ2µ

∗
2

]
λ1k(t)

−λ̇2k(t) = −q2k −
[
σ1kµ

∗
1k + σ1µ

∗
1 + σ2kµ

∗
2k + σ2µ

∗
2

]
λ2k(t)

or

−λ̇1k(t) = q1k − a∗kλ1k(t)

−λ̇2k(t) = −q2k − a∗kλ2k(t)

with a∗k = (σ1kµ
∗
1k + σ1µ

∗
1 + σ2kµ

∗
2k + σ2µ

∗
2). Note that again a∗k > 0 because µ−1k,

µ+
1k, µ−2k, µ+

2k, µ−1 , µ+
1 , µ−2 , µ+

2 , σ1k, σ2k, σ1 and σ2 are positive quantities and also
a∗k is a piece-wise time function. If the game is defined in the interval 0 ≤ t ≤ T ,
the solution of the above equations that satisfy the transversality conditions

λ1k(T ) = 0 , λ2k(T ) = 0

are
λ1k(t) =

q1k
a∗k

(1− ea
∗
k(t−T )) (59)

λ2k(t) = −q2k
a∗k

(1− ea
∗
k(t−T )) (60)

so λ1k(t) > 0 and λ2k(t) < 0 in the interval 0 ≤ t ≤ T .
The state variable satisfy the equation (54) or

ẋk(t) = (σ1kµ
∗
1k + σ1µ

∗
1)− a∗kxk(t)

The form of solution for the initial condition xk(0) = x0k in a specific piece-wise
time interval is

xk(t) =
(σ1kµ

∗
1k + σ1µ

∗
1)

a∗k
−
[

(σ1kµ
∗
1k + σ1µ

∗
1)

a∗k
− x0k

]
e−a

∗
kt (61)

where µ∗1k, µ∗1 and ak are piecewise functions of time.
The stationary solution for this local game are

λ1 sk =
q1k
a∗k

, λ2 sk = −q2k
a∗k

, xsk =
σ1kµ

∗
1k + σ1µ

∗
1

a∗k
.

For a finite time game horizon T these static solutions are never reached for this
system. Only if T →∞, again these stationary point are reached from the solutions
as one can see from (59), (60) and (61). In fact, for the infinite-horizon game the
Lagrange multipliers are constant and given by

λ1k(t) =
q1k
a∗k

t ≥ 0

λ2k(t) = −q2k
a∗k

t ≥ 0
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The dynamical evolution of the system through of the different piece-wise sectors,
will depend on the specific chosen values of the game parameters.

4.4. The pure global case for the 2×2 game. In this section an analysis of the
pure global case will be developed and then it will be compared with the local case.
Consider a two firm pure global game (i = 1, 2 and k = 1) whose state variables are
x11(t) and x21(t) for each player respectively. These variables are constrained to
x11(t)+x21(t) = 1 for all t ε [0, T ]. We choose x(t) = x11(t) as the independent state
variable, so x21 = 1− x(t). The dynamical behavior of the independent variable is
given by an equation analogous to equation (28) but taken σik = 0, bik = 0 and
Bik = 0 for i = 1, 2, k = 1, 2, that is

ẋ(t) = α1(t)
√

1− x(t)− α2(t)
√
x(t) (62)

where

α1(t) = σ1 µ1(t) (63)

α2(t) = σ2 µ2(t) (64)

and corresponds to the global part of the αi. The players functionals are in this
global case

J1 =

∫ T

0

e−r1t

[
q11x(t) +

1

2
Q11x(t)2 − e1µ1(t)− 1

2
E1 (µ1(t))2

]
dt (65)

and

J2 =

∫ T

0

e−r2t

[
q21(1−x(t)) +

1

2
Q21(1−x(t))2− e2µ2(t)− 1

2
E2 (µ2(t))2

]
dt (66)

subject to the equation (62). The corresponding Hamiltonians are ( here λ1 = λ111
and λ2 = λ211 )

H1 = e−r1t

[
q11x(t) +

1

2
Q11x(t)2 − e1µ1(t)− 1

2
E1 (µ1(t))2

]

+ λ1
(
α1(t)

√
1− x(t)− α2(t)

√
x(t)

) (67)

and

H2 = e−r2t

[
q21(1− x(t)) +

1

2
Q21(1− x(t))2 − e2µ2(t)− 1

2
E2 (µ2(t))2

]

λ2
(
α1(t)

√
1− x(t)− α2(t)

√
x(t)

) (68)

The Pontryagin equations give for the optimal controls

µ1(t) =
λ1 σ1

√
1− x(t)

e−r1t E1
− e1
E1

(69)

µ2(t) = −
λ2 σ2

√
x(t)

e−r2t E2
− e2
E2

(70)

and the dynamical equations for the Lagrangian multipliers are
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λ̇1 = −e−r1t(q11 +Q11x(t)) + λ1
(

α1

2
√

1− x
+

α2

2
√
x

)
(71)

and

λ̇2 = e−r2t(q21 +Q21(1− x(t))) + λ2
(

α1

2
√

1− x
+

α2

2
√
x

)
(72)

or by replacing the explicit form of the controls (69), (70), one obtains finally

λ̇1 =− e−r1t(q11 +Q11x(t)) +
(λ1)2(σ1)2

2E1e−r1t

− λ1λ2(σ2)2

2E2e−r2t
− λ1σ1e1

2E1

√
1− x

− λ1σ2e2
2E2
√
x

(73)

and

λ̇2 =e−r2t(q21 +Q21(1− x(t)))− (λ2)2(σ2)2

2E2e−r2t

+
λ1λ2(σ1)2

2E1e−r1t
− λ2σ1e1

2E1

√
1− x

− λ2σ2e2
2E2
√
x

(74)

Equations (73) and (74) gives a “Ricatti like” system of coupled equations that
depend explicitly on x(t). Only if the linear terms of the global controls µ1 and µ2

and the quadratic terms in the state variable x(t) does not appear in the Hamilton-
ian’s players (that is, e1 = 0, e2 = 0, Q11 = 0 and Q21 = 0), the pure global case
dynamic of the Lagrangian multipliers are independent of the state variable x(t)
and satisfy Ricatti equations of motion.

By defining λi = λ̄ie−rit, i = 1, 2 equations (62), (73), (74) can be written in
terms of λ̄ as

ẋ(t) =
(σ1)2

E1
λ̄1(1− x) +

(σ2)2

E2
λ̄2x− σ1e1

E1

√
1− x+

σ2e2
E2

√
x (75)

˙̄λ1 = r1λ̄
1 − (q11 +Q11x) +

(λ̄1)2(σ1)2

2E1
− λ̄1λ̄2(σ2)2

2E2
− λ̄1σ1e1

2E1

√
1− x

− λ̄1σ2e2
2E2
√
x

(76)

˙̄λ2 = r2λ̄
2+(q21+Q21(1−x))− (λ̄2)2(σ2)2

2E2
+
λ̄1λ̄2(σ1)2

2E1
− λ̄2σ1e1

2E1

√
1− x

− λ̄
2σ2e2

2E2
√
x

(77)

Thus, the global dynamic of the 2 × 2 game is defined by equations (75), (76)
and (77).

One important limit behavior of the this systems corresponds to the static limit,
in which

ẋ = 0, ˙̄λi = 0 i = 1, 2. (78)

Then, the stationary values of the Lagrangian multipliers λ̄i and state variable x is
given by the solutions of the algebraic equations:

0 =
(σ1)2

E1
λ̄1(1− x) +

(σ2)2

E2
λ̄2x− σ1e1

E1

√
1− x+

σ2e2
E2

√
x (79)

0 = r1λ̄
1 − (q11 +Q11x) +

(λ̄1)2(σ1)2

2E1
− λ̄1λ̄2(σ2)2

2E2
− λ̄1σ1e1

2E1

√
1− x

− λ̄1σ2e2
2E2
√
x

(80)

0 = r2λ̄
2+(q21+Q21(1−x))− (λ̄2)2(σ2)2

2E2
+
λ̄1λ̄2(σ1)2

2E1
− λ̄2σ1e1

2E1

√
1− x

− λ̄
2σ2e2

2E2
√
x

(81)
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These stationary values of x and λ̄i are the asymptotic ones, that is, correspond to
the values t→ T for x(t) and t→ 0 for λ̄(t). Because λi(t) = λ̄i(t)e−rit, i = 1, 2 ,
the asymptotic behavior for λi is

lim
t→0

λi(t) = lim
t→0

λ̄i(t)e−rit = λ̄i0 (82)

where λ̄i0 are the stationary solutions for λ̄i. Thus, the values of the Lagrangian
multipliers λi goes asymptotically to the values of the stationary solutions of λ̄i.

The following figures show the numerical solution of the equation (62), (73) and
(74) for the values of the global game parameters listed in table 2. Figure (3)
shows the temporal dependence of state variable x(t). Figure (2) shows the control
variables µ1 and µ2 versus time. Figure (3) shows the Lagrangian multipliers λ1
and λ2 in function of time. At last, figure (4) shows the phase diagram for the
global game (λi versus x). The initial condition for x(t) is x(0) = 0.2 and the time
horizon is T = 8.

Global parameters
q11 0.8

q21 0.3

Q11 0.0

Q21 0.0

e1 0.0

e2 0.0

E1 0.5

E2 0.3

σ1 0.95

σ2 1.6

r1 0.01

r2 0.05

Table 2. Data for the pure global game.

Figure 1. x(t) for the global case in table 2



20 MARCELO J. VILLENA AND MAURICIO CONTRERAS

Figure 2. µi(t) for the global case in table 2

Figure 3. λi(t) for the global case in table 2
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Figure 4. Phase space diagram (λi versus x) for the global case
in table 2

The stationary solutions of the system (79), (80) and (81) are:

1) x = 0.3540, λ1 = −0.562, λ2 = 0.217

2) x = 0.367, λ1 = 0.568, λ2 = −0.207

3) x = 2050.099, λ1 = −55.474, λ2 = −11.728

(83)

Thus, this global game posses three different possible asymptotic stationary dynam-
ics. For our initial conditions, the system evolves finally to the second stationary
solution, as one can see clearly from the figures (1), (3), and (4).

4.5. Results for some specific cases of the local dynamics. In general, we
have to find the following decision variables for each firm : i) the local advertising
effort at each market, µik(t), i = 1, 2, k = 1, 2, and ii) the global advertising
effort, µi(t), i = 1, 2. For this particular case, there are three decision variables
for each firm, one global and tow market specific, see the variables with asterisk in
figure 1. On the other hand, each firm have to determine four specific parameters
for each market, and other two global parameters, see figure 1. Finally, besides the
decision variables, the evolution of market share xik(t), i = 1, 2, k = 1, 2 will
be the main variable of managerial interest. For each particular Case we will also
analyze the phase phase space of the system (λ, x).
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Figure 5. Game description

Specifically, we will develop the numerical solution and analysis of the results of
four games, discussing the importance of global advertising strategies, asymmetries
of the players, and the geographical presence of firms. The parameters considered
are shown in table 3: (we set Qik = 0, bik = 0 and ei = 0 for i = 1, 2 and k = 1, 2
all four cases below)

Case 1 Case 2 Case 3 Case 4
Firm 1 Firm 2 Firm 1 Firm 2 Firm 1 Firm 2 Firm 1 Firm 2

qi1 3 3 3 3 3 3 3 3

qi2 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

Bi1 1 1 1 1 1 1 1 1

Bi2 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7

Ei 1 1 1 2 1 1 1 1

σi1 0.1 0.1 0.1 0.1 0.7 0.1 0.7 0.8

σi2 0.1 0.1 0.1 0.1 0.7 0.1 0.7 0

σi 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2

Table 3. Data of numerical examples

The initial conditions for all the games are x11(0) = 0.5, x12(0) = 0.6, x13(0) =
0.4. We assume that global advertising is more expensive than local efforts, how-
ever they are most effective. When firms are asymmetric, we assume that one firm
has double the local advertising effectiveness. For the case with different market
presence, we assume that a firm has its business in just one location, not in all mar-
kets. Finally, for all cases the discount rate will be one percent for both competitors
(ri = 1%).

• Case 1. Symmetric firms and symmetric advertising strategies: the
base scenario
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From figure 2, we can see the optimal global and local advertising strategies for firm
1 and 2. Given the symmetry of this base scenario, the optimal local and global
investments in advertising for firm 1 and 2 are the same. For the same reason, the
market share remains the same for every firm in every market. It is important to
note that since the optimal global advertising variable is non-zero for both firms,
we could infer that considering the parameters of this particular example, global
advertising improve profits for firms.

Figures 6 (f), 7 (f), 8 (f) and 9 (f) show the λ multipliers λ11, λ21 versus x11 and
λ12, λ22 versus x12 on the same graph. Due that the standard economic interpre-
tation of the Lagrangian multiplier is the firm’s wealth increase due to one more
unit of capital at time t, the phase space graphs 6 (f), 7 (f), 8 (f) and 9 (f) gives
the firm’s wealth increase valuation for each market in terms of the participation of
firm 1 on the same market, for all cases given in table 3. From panel (f) of figure
6, we can see the phase diagram, that in this case is again symmetric. It presents
different patterns for market 1 and 2, recognizing the fact that market 1 is much
more profitable for unit of market share for both firms.

• Case 2. Symmetric firms with different Global Advertising Possi-
bilities (E2 = 2).

In this scenario, all the parameters remain the same that in case 1, so firms are
still symmetric, however, the cost of global advertising is doubled for firm 2, see
table 3. Given the fact that global advertising got more expensive in relative terms
for firm 2, the investment for this item is reduced by firm 2, and slightly increased
by firm 1. Indeed, figure 3 shows that global advertising decreased sharply in this
scenario compare to that invested in case 1. On the other hand, firm 2, in order
to compensate the decrease in global advertising, increased local advertising in the
two markets . The results in terms of market share are shown in figure 7 panel (e)
for firm 1, and hence implicitly for firm 2, since market share represents a zero-sum
game. The clear results is that firm 1 increase its market share in both markets. In
summary, the increase in the global advertising cost decreases market share for firm
2. In panel (f) of figure 7, we can see the phase diagram. In this case, the effects
are again symmetric, but much more elastic than in the previous case, indicating
the relative change in the overall cost of global advertising in favor of firm 1.

• Case 3. Asymmetric firms (σ1k > σ2k ).

In Case 3, all the parameters remain the same that in the base scenario, nevertheless,
the local advertising effectiveness for firm 1 is increased by 10%, see table 2. The
main result of this example is that as a consequence of the small increase in the
effectiveness of the local advertising of firm 1, this firms increase its expenditure in
this item in both markets. Firm 2 does not change its global and local strategy and
thus losses a small percentage of market share in market 2. In panel (f) of figure
7, we can see the phase diagram. In this case, the effects are again symmetric,
but much more elastic than in the two previous cases, indicating the change in the
relatively greater effectiveness in advertising of firm 1.

• Case 4. Firms with different market presence (σ22 = 0 ).

Finally, in this example we restrict firm 2 to a only one market, market 1. What
happens is that firm one decreases its advertising efforts in market 2, and maintains
its advertising rate in market 1. On the other hand, firm 2 increases its global
advertising effort, since this is more cost-effective, increasing this way its market
share in market 1, the only market is participating. For firm 1, this is the best
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scenario, since its total profit increased due to the notorious increase in market
share in market 2. It is important to note, that without a model as this, developed
in this paper, the traditional local optimization in a specific market could not have
predicted the increase in market share in market 2 by firm 1.

Figure 6. Case 1 in table 3
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Figure 7. Case 2 in table 3
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Figure 8. Case 3 in table 3
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Figure 9. Case 4 in table 3

4.6. Comparison between local and global dynamics for 2 × 2 game. In
this subsection we compare the local and global dynamics. Figure 10a shows the
numerical solution of equation (62) of the pure-global game for the parameters
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values given in case 0 of table 4. Figure 10b shows the phase diagram for the global
game (λ versus x). The initial conditions for x(t) is x(0) = 0.6.

Now, one can use the complete local and global game to try to obtain the pure
global solution given in figure 10a and explore the local effects over it. Figure 11a
shows the values of x11(t), x12(t) and xp(t) (defined as the the mean value of x11
and x12, that is, xp(t) = 1/2(x11(t) + x12(t)) ) for the same “quasi-global game”
given in the case 1 of table 4. Note that all they coincides for the quasi-global case
and they have the same dynamical structure of the pure-global case. Figure 11b
shows the phase space diagrams λ11, λ21 versus x11 and λ12, λ22 versus x12 in the
same graph. Again, they give similar dynamics: λ11 is equivalent to λ21, and λ12
is equivalent to λ22. The initial conditions are x11(0) = 0.6 and x12(0) = 0.6

In order to explore the local effects over the global game, the figure 12 shows
the solution of the complete game for the parameter values listed in the case 2 of
the table 4. Figure 12a shows different evolutions for the state variables x11(t) and
x12(t). The green curve is xp(t). The phase space is showed in figure 12b.

Note that the pure global game cannot “see” the local structure given by figure 12,
but still the λ global multiplier has information about this structure. For example,
the λ1 global multiplier in figure 10b oscillates from the right side (from the λ12
side of figure 12b ) to the left side (to the λ11 side of figure 12b). The same is truth
for λ2. The initial conditions are again x11(0) = 0.6 and x12(0) = 0.6

Case 0: pure-global Case 1: quasi-global Case 2: local effects
Firm 1 Firm 2 Firm 1 Firm 2 Firm 1 Firm2

qi1 0.8 0.3 0.8 0.3 0.8 0.3

qi2 0.8 0.3 0.8 0.3 0.8 0.3

Qi1 0 0 0 0 0 0

Qi2 0 0 0 0 0 0

bi1 0 0 0 0 0 0

bi2 0 0 0 0 0 0

Bi1 0 0 0.001 0.001 5 0.1

Bi2 0 0 0.001 0.001 1 2

ei 0 0 0 0 0 0

Ei 1 2 1 2 1 2

σi1 0 0 0 0 0.1 0.3

σi2 0 0 0 0 0.6 0.1

σi 1 1.9 1 1.9 1 1.9

ri 0.01 0.05 0.01 0.05 0.01 0.05

Table 4. Data for pure-global (case 0), quasi-global (case 1) and
local effects (case 2).

5. Conclusions and further work. Most studies found in the literature of how
to model advertising strategies using differential games focus on the dynamics and
market structure of the problem, but neglect their spatial dimension. Since com-
petition in our days typically takes place on geographically separated markets, the
spatial modeling of their advertising strategies becomes a crucial issue, especially
in competitive multi-store retail environments.
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Indeed, distinct geographical locations may involve very different realities, with
highly heterogeneous parameters. Within this environment, the outcome of a gen-
eral model considering average parameters may reflect sub-optimal results. On the
other hand, optimal local strategies will always remain sub-optimal strategies, un-
less there is a perfect homogeneity between the stores’ respective characteristics
and environments, in terms of the effectiveness of their strategy, costs and levels of
competitiveness.

Figure 10. The pure-global case, case 0

Figure 11. The quasi-global case, case 1
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Figure 12. The local case, case 2

Thus, companies must usually to decide not only as to when and how much to
invest in advertising, but also, where to allocate their advertising funds. Besides,
retail chains have to choose whether to undertake global (i.e. worldwide, national or
regional) or local (i.e. a city zone or region, or even an entire country) advertising
efforts or an optimal combination of both.

In this paper, we propose a model that, while keeping the dynamic and oligopolis-
tic characteristics of the advertising game, it introduces the spatial dimension of the
problem, considering the global and local efforts of advertising. Specifically, we de-
veloped a model where companies can interact in more than one market, thereby
enabling their launching of global advertising strategies influencing all markets. The
model allows for the calibration of different parameters: for advertising effectiveness,
markets with different levels of revenue and competition and different advertising
costs for every geographical location.

The numerical results highlight the importance of spatial modeling in order to
capture general equilibrium effects due to global advertising efforts and changes
in specific markets that affect the others markets. These effects have significant
impacts on the global profit of companies and their advertising strategies.

Firstly, we saw that global advertising could be a great advantage for multi-store
competition. Indeed, a more expensive global advertising could mean a significant
loss in market share, in all markets. Secondly, it is clear that changes in one
specific market could affect each company’s optimal equilibrium, thereby implying
that aggregation using average parameters and local optimization with specific local
market parameters, could result in sub-optimal policies.

Finally, it is expected that more examples that are practical may be developed
based on this model, in order to prove its validity and relative importance (with
respect to more aggregated previous models). Since the oligopolistic spatial markets
are the rule rather than the exception, it is expected that many industries could be
spatially calibrated, for instance: food chains, supermarkets chains, multinationals
franchising, retailers of gasoline, banks and telecommunication, and so on.
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